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Objectives Figure 1: Snapshot of PIV flow data at a = 10°

» Understand POD representation of airfoil flow.

Background

« The flow around wings is incredibly complex due to the

presence of large organised structures (von Karman shedding, . Identify what structures POD and DMD extract
Kelvin-Helmholtz instability) and small chaotic motions. from PIV fluid flow data around a NACA 0018
* Reynolds number, angle of attack and free-stream turbulence airfoil at Re = 10250 and a = 0°, a = 10°.
all impact the vast number of particles in the flow. . Compare the structures extracted from the flow
« Modal decomposition techniques can extract these structures using POD to those extracted by DMD. ' —_—
by energy and frequency for reduced-order modelling. This| |. {iilise BMD to reveal how structures identified \ ‘
report compared POD, DMD and BMD decompositions . by POD and DMD interact with each other. 4
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Spatial and Temporal PIV Data = Singular Values Left Singular Vector (Spatial Coefficients) Right Singular Vector (Temporal Coefficients)

Proper Orthogonal Decomposition

POD mode 1, 6998 time snapshots 0045 POD maode 2, 6998 time snapshots . = Mode 1 coefficient frequency = Mode 2 coefficient frequency
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« Many constituent frequencies due to multiple flow : Figure 4: Spectral analysis of
y q . : P Figure 3: POD modes at a = 10° & pectra Y .
structures and complexity of flow interactions. temporal coefficients at a = 10
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- DMD returns non-orthogonal spatial modes with their . H:: . H £ | |
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modal oscillations and growth/decay rates. : R T

Mode 3 coefficient frequency, 6998 snapshots
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Imaginary part

« Eigenvalues always appear in complex conjugate ml : ;; ”33? . H
pairs of oscillatory modes slightly within the unit circle. = |\ 1 . ‘OU e | ‘ il
« Structures are dynamically stable, will decay slowly.
- Shear layer with Kelvin-Helmholtz instability and von “*| ; s
. Karman vortex street clearly separated. N -8 \|| QJ U LS o Hz:i
* Longer wavelengths correspond to lower frequencies, S
all modes travel with similar convection. AR e T -
« Evidence of vortex merging visible. i \,. | N '.Ms ' H;:
Clear frequency peaks, well separated flow features. oo

Made 4 coefficient frequency, 6998 snapshots Mode 9 coefficient frequency, 6998 snapshots
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Figure 5: Eigenvalues from DMD at a = 10° Flgure 6: DMD modes at a = 10° Figure 7: Spectral analysios
of DMD modes at a =10
Similarity between POD and DMD Modes, 1l:_ideg Angle of Attack Mode bispectrum C I o
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6 .
g 7{0S%I05% 87% 87% 10.8% 10.8%15.0% 15.0% due to velocity shear between the boundary layer
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interacting through vortex merging at the a = 10°
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Figure 8: Projections of DMD modes onto POD modes at a = 10 Figure 9: BMD complex mode bispectrum at a =10
PrOJECtIOnS B|-spectral Modal Decomposmon . :c_lnklng e_nerg|3|/ strudctfure%to t_?_elr _constltcuﬂent f
- - PRSRTR - requencies allowed for igentifications of flow teatures
.+ POD modes represented almost entirely by one conjugate DMD * BMD educes coherent flow structures associated with triadic interactions witﬂin POD. revealing the complexity of hiah-a flows
mode pair can be attributed to a single flow structure due to their from experimental or numerical data. - ) g th piexity 9 '
orthogonality. - It establishes a causal relationship between the three frequency * BMD confirmed that at high angles of attack, a
- Due to increased nonlinear interactions in high-a flow, POD modes components of a triad _ _ _ greater number of interactions are present generating
at o = 10° are less successful than at a = 0° for discerning single * This permits the distinction of sum- and difference-interactions, and the many new structures.
frequency orthogonal structures. computation of interaction maps indicating regions of nonlinear coupling. | Both techniques allowed for more meaningful

. The fundamental frequencies of the flow change with angle of attack * At a = 10° many interactions are present between 4Hz and 8Hz, M o
of the airfoil, leading to differences in shedding pattern. generating many new frequencies and adding to wake complexity. exploitation of POD results by linking them to flow

features known to exist around airfoils.
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